To investigate the molecular mechanisms of implantation, we constructed a cDNA library of mouse uteri enriched with pregnancy-induced genes by subtractive hybridization and polymerase chain reaction (PCR). One of the isolated clones was the cDNA for the calcium binding protein D-9k (Cabp9k), which is considered to regulate intracytoplasmic concentration and transport of free calcium ions. Northern blot and in-situ hybridization analyses demonstrated that the Cabp9k mRNA was expressed in the endometrial epithelia, both luminal and glandular, in the uterus at the time of implantation. On pregnancy day 5 it was detected in the luminal, but not in the glandular, epithelia. In the oophorectomized adult mice, progesterone enhanced Cabp9k mRNA expression in the uterus, whereas oestrogen did not. Consistent with this, a nucleotide change was identified in the first intron of mouse Cabp9k gene corresponding to the oestrogen responsive element in the rat Cabp9k gene. Transfer of embryos into the uterine cavity of pseudopregnant mice reduced the expression of Cabp9k mRNA in the glandular epithelium, suggesting that Cabp9k mRNA expression is also regulated by embryonal signal(s). These findings demonstrated that Cabp9k mRNA is expressed in the endometrial epithelia during the implantation period under the control of progesterone and the presence of embryo, and suggest that CaBP9k plays a role in implantation by regulating the local calcium concentrations.