The extent of myocardial salvage after primary percutaneous transluminal coronary angioplasty (PTCA) in acute myocardial infarction (AMI) is variable and cannot be predicted on the basis of either vessel patency or early regional wall motion assessment. The aim of this study was to evaluate the reliability of microvascular integrity, as shown by myocardial contrast echocardiography (MCE), as an indicator of tissue salvage and a predictor of late functional recovery, and to compare MCE with the quantification of tracer activity in sestamibi perfusion imaging.
Methods: Twenty-six patients with AMI who received successful treatment with primary PTCA were examined with MCE during cardiac catheterization immediately before and after vessel recanalization. Myocardial contrast effect was scored as 0 (absent), 0.5 (partial) or 1 (normal). Wall motion was assessed by two-dimensional echocardiography on admission and 1 mo later with a 16-segment model and 4-point score. Resting sestamibi SPECT was collected within 1 wk after AMI. The risk area was defined by MCE as the sum of the segments with no perfusion (score 0) before PTCA. Myocardial viability was defined by MCE as an increase in contrast score in the same segments after PTCA and by sestamibi SPECT as a preserved tracer activity (>60% of peak activity). The functional recovery after 1 mo detected by two-dimensional echocardiography was the reference standard for viability.
Results: A total of 50 segments showed perfusion defects before PTCA (risk area). Immediately after PTCA, the MCE score increased in 44 of 50 segments, whereas sestamibi SPECT showed preserved activity in 22 of 50 segments. After 1 mo, the wall motion score decreased in 22 of 50 segments (viable segments) and was unchanged in the remaining 28 segments. Thus, MCE showed a sensitivity of 91% and a specificity of 14% in detecting viable myocardium, whereas sestamibi SPECT showed a lower sensitivity (68%) but a significantly higher specificity (75%; P < 0.00001). The positive predictive values were 45% and 68% for MCE and SPECT (P < 0.005), respectively, and the negative predictive values were 67% and 71%, respectively. On a patient basis, SPECT was more specific (79% versus 21%; P < 0.01) and showed a higher overall predictive accuracy (88% versus 50%; P < 0.01) than MCE.
Conclusion: The demonstration of microvascular integrity by MCE performed immediately after primary PTCA has a limited diagnostic value in predicting salvaged myocardium. Conversely, tracer activity quantification in resting sestamibi SPECT performed in a later stage is confirmed to be a reliable approach for recognizing myocardial stunning and predicting functional recovery.