Intracellular signals that mediate differentiation of pluripotent hemopoietic progenitors to dendritic cells (DC) are largely undefined. We have previously shown that protein kinase C (PKC) activation (with phorbol ester (PMA) alone) specifically induces differentiation of primary human CD34+ hemopoietic progenitor cells (HPC) to mature DC. We now find that cytokine-driven (granulocyte-macrophage CSF and TNF-alpha) CD34+ HPC-->DC differentiation is preferentially blocked by inhibitors of PKC activation. To further identify intracellular signals and downstream events important in CD34+ HPC-->DC differentiation we have characterized a human leukemic cell line model of this process. The CD34+ myelomonocytic cell line KG1 differentiates into dendritic-like cells in response to granulocyte-macrophage CSF plus TNF-alpha, or PMA (with or without the calcium ionophore ionomycin, or TNF-alpha), with different stimuli mediating different aspects of the process. Phenotypic DC characteristics of KG1 dendritic-like cells include morphology (loosely adherent cells with long neurite processes), MHC I+/MHC IIbright/CD83+/CD86+/CD14- surface Ag expression, and RelB and DC-CK1 gene expression. Functional DC characteristics include fluid phase macromolecule uptake (FITC-dextran) and activation of resting T cells. Comparison of KG1 to the PMA-unresponsive subline KG1a reveals differences in expression of TNF receptors 1 and 2; PKC isoforms alpha, beta I, beta II, and mu; and RelB, suggesting that these components/pathways are important for DC differentiation. Together, these findings demonstrate that cytokine or phorbol ester stimulation of KG1 is a model of human CD34+ HPC to DC differentiation and suggest that specific intracellular signaling pathways mediate specific events in DC lineage commitment.