Background: The increased risk of colonic malignancies in individuals with ulcerative colitis has prompted a search for early biomarkers of disease progression.
Aim: To characterize Phase II detoxication enzyme expression during acute and chronic colitis. The mouse model of dextran sulphate sodium (DSS)-induced colitis represents a relevant system with which to sequentially evaluate the spectrum of biochemical changes associated with colorectal cancer risk.
Methods: Acute and chronic colitis were induced in Swiss Webster mice by administering DSS in the drinking water (5%) for 1-4 cycles. Each cycle consisted of 7 days DSS and 14 days of water. The glutathione S-transferase (GST) activity, gamma-glutamylcysteine synthetase (gamma-GCS) activity and glutathione content of the colonic tissues were determined at various time points throughout the experiment. Alterations in GST isozyme expression were confirmed by Western and Northern blot.
Results: GST activity was reduced significantly in the colon by the end of Cycle 1 (84% of control values). Specific activities continued to decrease with subsequent cycles of DSS exposure. By the end of Cycle 4, glutathione levels and gamma-GCS activity had reached 29% and 56% of control, respectively.
Conclusions: These data suggest that detoxication enzyme depletion is associated with both acute and chronic colitis and may be an important event in the progression of ulcerative colitis to colon cancer.