A potential application of the continuous renal replacement therapies is the extracorporeal removal of inflammatory mediators in septic patients. Cytokine elimination with continuous renal replacement therapies has been demonstrated in several clinical studies, but so far without important effects on their serum concentrations. Improved knowledge of the cytokine removal mechanisms could lead to the development of more efficient treatment strategies. In the present study, 15 patients with septic shock and acute renal failure were observed during the first 24 h of treatment with continuous venovenous hemofiltration (CVVH) with an AN69 membrane. After 12 h, the hemofilter was replaced and the blood flow rate (QB) was switched from 100 ml/min to 200 ml/min or vice versa. Pre- and postfilter plasma and ultrafiltrate concentrations of selected inflammatory and anti-inflammatory cytokines were measured at several time points allowing the calculation of a mass balance. Cytokine removal was highest 1 h after the start of CVVH and after the change of the membrane (ranging from 25 to 43% of the prefilter amount), corresponding with a significant fall in the serum concentration of all cytokines. The inhibitors of inflammation were removed to the same extent as the inflammatory cytokines. Adsorption to the AN69 membrane appeared to be the main clearance mechanism, being most pronounced immediately after installation of a new membrane and decreasing steadily thereafter, indicating rapid saturation of the membrane. A QB of 200 ml/min was associated with a 75% increase of the ultrafiltration rate and a significantly higher convective elimination and membrane adsorption than at a QB of 100 ml/min. The results indicate that optimal cytokine removal with CVVH with an AN69 membrane could be achieved with a combination of a high QB/ultrafiltration rate and frequent membrane changes.