S-Adenosylmethionine serves as the methyl donor for many biological methylation reactions and provides the propylamine group for the synthesis of polyamines. S-Adenosylmethionine is synthesized from methionine and ATP by the enzyme methionine adenosyltransferase. The cellular factors regulating S-adenosylmethionine synthesis have not been well defined. Here we show that in rat hepatocytes S-nitrosoglutathione monoethyl ester, a cell-permeable nitric oxide donor, markedly reduces cellular S-adenosylmethionine content via inactivation of methionine adenosyltransferase by S-nitrosylation. Removal of the nitric oxide donor from the incubation medium leads to the denitrosylation and reactivation of methionine adenosyltransferase and to the rapid recovery of cellular S-adenosylmethionine levels. Nitric oxide inactivates methionine adenosyltransferase via S-nitrosylation of cysteine 121. Replacement of the acidic (aspartate 355) or basic (arginine 357 and arginine 363) amino acids located in the vicinity of cysteine 121 by serine leads to a marked reduction in the ability of nitric oxide to S-nitrosylate and inactivate hepatic methionine adenosyltransferase. These results indicate that protein S-nitrosylation is regulated by the basic and acidic amino acids surrounding the target cysteine.