Background: Immunosuppressive drugs that target T cells are useful for prolonging allograft survival. The anti-CD3 immunotoxin FN18-CRM9 has been shown to effectively prolong renal allograft survival in a rhesus monkey model of transplantation. However, immunotoxin-treated monkeys showed increased levels of inflammatory cytokines and produced antibodies to donor proteins. To better understand the role of FN18-CRM9 in the production of cytokines and anti-donor antibodies in the monkey model, we examined whether this immunotoxin elicits functional responses in T cells.
Methods: Purified normal rhesus monkey T cells (>98% purity) were incubated with immunotoxin FN18-CRM9 or the unconjugated anti-CD3 monoclonal antibodies and then examined for changes in protein tyrosine phosphorylation, adhesion to fibronectin, gene expression, and proliferation in the presence or absence of anti-CD28 monoclonal antibodies (mAb) and interleukin-2.
Results: Immunotoxin treatment of T cells in vitro increased protein tyrosine phosphorylation, cell adhesion to the extracellular matrix, and expression of the inflammatory cytokines interferon-gamma and tumor necrosis factor-alpha. These immunotoxin effects were similar in magnitude to those induced by the unconjugated mAb. In contrast, immunotoxin-induced T cell proliferation was markedly less than that induced by the unconjugated mAb. Interestingly, the mitogenic molecules IL-2 and anti-CD28 mAb did not prevent immunotoxin-induced inhibition of cell proliferation.
Conclusions: The activation of T cells for protein phosphorylation, adhesion, and cytokine expression strongly suggests that the actions of FN18-CRM9 in vivo are not limited to the inhibition of protein synthesis.