Complex chromosomal rearrangements (deletions, inversions, translocations) are a hallmark of human tumour cells. Yet, the generation of animal models for gross chromosomal abnormalities still presents a formidable challenge. Here, we describe a versatile procedure for chromosomal engineering that was used to generate an ES cell line with a megabase deletion encompassing the tumour suppressor gene neurofibromatosis-1 (Nf-1) on mouse chromosome 11, which is often deleted in tumours of neural crest origin. Homologous recombination into sites flanking Nf-1 was used to introduce artificial sequences (triple-helix, loxP, vector backbone) that can be employed for in vitro recovery of intervening sequences or the generation of in vivo deletions. This strategy may be developed into a scheme by which large chromosomal regions with precisely defined end points may be excised from mammalian cells and reintroduced after suitable in vitro modification.