G protein selectivity is a determinant of RGS2 function

J Biol Chem. 1999 Nov 26;274(48):34253-9. doi: 10.1074/jbc.274.48.34253.

Abstract

RGS (regulator of G protein signaling) proteins are GTPase-activating proteins that attenuate signaling by heterotrimeric G proteins. Whether the biological functions of RGS proteins are governed by quantitative differences in GTPase-activating protein activity toward various classes of Galpha subunits and how G protein selectivity is achieved by differences in RGS protein structure are largely unknown. Here we provide evidence indicating that the function of RGS2 is determined in part by differences in potency toward G(q) versus G(i) family members. RGS2 was 5-fold more potent than RGS4 as an inhibitor of G(q)-stimulated phosphoinositide hydrolysis in vivo. In contrast, RGS4 was 8-fold more potent than RGS2 as an inhibitor of G(i)-mediated signaling. RGS2 mutants were identified that display increased potency toward G(i) family members without affecting potency toward G(q). These mutations and the structure of RGS4-G(i)alpha(1) complexes suggest that RGS2-G(i)alpha interaction is unfavorable in part because of the geometry of the switch I binding pocket of RGS2 and a potential interaction between the alpha8-alpha9 loop of RGS2 and alphaA of G(i) class alpha subunits. The results suggest that the function of RGS2 relative to other RGS family members is governed in part by quantitative differences in activity toward different classes of Galpha subunits.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Amino Acid Sequence
  • Amino Acid Substitution
  • Binding Sites / genetics
  • Binding, Competitive
  • Carbachol / pharmacology
  • Cell Line
  • GTP-Binding Proteins / metabolism*
  • Humans
  • Models, Molecular
  • Molecular Sequence Data
  • Point Mutation
  • Protein Structure, Tertiary
  • RGS Proteins / chemistry
  • RGS Proteins / genetics
  • RGS Proteins / metabolism*
  • Recombinant Fusion Proteins / genetics
  • Recombinant Fusion Proteins / metabolism
  • Sequence Alignment
  • Sequence Homology, Amino Acid
  • Signal Transduction / drug effects

Substances

  • RGS Proteins
  • Recombinant Fusion Proteins
  • Rgs2 protein, mouse
  • RGS4 protein
  • Carbachol
  • GTP-Binding Proteins