Background: To determine whether fetal renal obstruction activates the renal renin-angiotensin system (RAS), an important mediator in normal kidney development and obstructive nephropathy, we used a model of fetal partial bladder outlet obstruction (PBOO).
Methods: Total RNA and protein was extracted from kidney of sheep fetuses with partial bladder outlet obstruction created at 95 days gestation, after 2 (N = 6) and 5 weeks of obstruction (term; N = 6), and from normal fetal sheep at various time points between 60 and 135 days of gestation (total N = 19). Relative levels of mRNA for renin, angiotensinogen, type 1 and 2 angiotensin II (Ang II) receptors (AT-1 and AT-2), and transforming growth factor-beta1 (TGF-beta1) were assessed by semiquantitative reverse transcription-polymerase chain reaction. Expression levels of AT-2 receptor protein were measured by Western blot analysis.
Results: Renin mRNA expression was increased (250%) after two weeks of obstruction. In normal fetuses, AT-1 expression was low at 60 to 75 days of gestation and increased toward the end of gestation, whereas AT-2 expression showed a reversed pattern. At 109 days, PBOO caused an increased expression of AT-2 mRNA compared with normals (400%). Correspondingly, AT-2 receptor protein was more abundant in obstructed kidneys. TGF-beta1 mRNA expression was significantly increased in obstructed kidneys at 109 days gestation.
Conclusions: These observations confirm the reciprocal developmental regulation of AT-1 and AT-2 receptors' expression, suggesting their functional role in renal development. Partial bladder outlet obstruction produces specific alterations: increased renin expression and altered balance of receptor subtypes, which may induce altered functional and vascular regulation of the obstructed fetal kidney. TGF-beta1, a mediator of Ang II-induced fibrosis, may play a role in inducing and propagating interstitial fibrosis.