Hepatitis B virus (HBV) was partitioned into type, subtype and isolate categories and the average evolutionary distances within and between categories was plotted at each of 54 points along the genome. The graphs showed alternating variable and conserved domains within and between HBV subtypes and revealed that some specimens assigned to different groups are more similar across several contiguous intervals than specimens belonging to the same group. Isolates were screened individually to determine their conformation to type and mosaic structure was identified in 14/65 specimens. Two entire clades (six specimens) of genotype B had a B/C sequence switch in the core gene region, whereas six genotype D specimens showed D/A switching in one or more regions of the genome. Genotype E was not separate from genotype D in the X and C subgenomic regions. The nature and distribution of polymorphic sites in mosaic regions was mapped at both the nucleotide and protein levels and the position of the variant fragments was related to mutational hot spots and linear epitopes of HBV. Mosaic structure was demonstrated statistically in 11 isolates using bootstrap resampling and recombination, rather than random change, appeared to be the mechanism responsible. The sequence between and including the two DR regions was represented in all putative recombinants. The distribution of genetic distances over subgenomic regions showed that substitution rates are not constant among the lineages of HBV in the preS regions. Genotype F is the most diverse group. Only genotypes A, C and F partition consistently into subtypes.