The interaction between the Drosophila secreted protein argos and the epidermal growth factor receptor inhibits dimerization of the receptor and binding of secreted spitz to the receptor

Mol Cell Biol. 2000 Mar;20(6):2098-107. doi: 10.1128/MCB.20.6.2098-2107.2000.

Abstract

Drosophila Argos (Aos), a secreted protein with an epidermal growth factor (EGF)-like domain, has been shown to inhibit the activation of the Drosophila EGF receptor (DER). However, it has not been determined whether Aos binds directly to DER or whether regulation of the DER activation occurs through some other mechanism. Using DER-expressing cells (DER/S2) and a recombinant DER extracellular domain-Fc fusion protein (DER-Fc), we have shown that Aos binds directly to the extracellular domain of DER with its carboxyl-terminal region, including the EGF-like domain. Furthermore, Aos can block the binding of secreted Spitz (sSpi), a transforming growth factor alpha-like ligand of DER, to the extracellular domain of DER. We observed that sSpi stimulates the dimerization of both the soluble DER extracellular domain (sDER) and the intact DER in the DER/S2 cells and that Aos can block the sSpi-induced dimerization of both sDER and intact DER. Moreover, we have shown that, by directly interacting with DER, Aos and SpiAos (a chimeric protein that is composed of the N-terminal region of Spi and the C-terminal region of Aos) inhibit the dimerization and phosphorylation of DER that are induced by DER's overexpression in the absence of sSpi. These results indicate that Aos exerts its inhibitory function through dual molecular mechanisms: by blocking both the receptor dimerization and the binding of activating ligand to the receptor. This is the first description of this novel inhibitory mechanism for receptor tyrosine kinases.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Line
  • Dimerization
  • Drosophila
  • Drosophila Proteins*
  • Epidermal Growth Factor*
  • ErbB Receptors / metabolism*
  • Eye Proteins / metabolism*
  • Ligands
  • Membrane Proteins / metabolism*
  • Nerve Tissue Proteins / metabolism*
  • Recombinant Fusion Proteins / metabolism
  • Recombinant Proteins / metabolism
  • Signal Transduction*

Substances

  • Drosophila Proteins
  • Eye Proteins
  • Ligands
  • Membrane Proteins
  • Nerve Tissue Proteins
  • Recombinant Fusion Proteins
  • Recombinant Proteins
  • aos protein, Drosophila
  • spi protein, Drosophila
  • Epidermal Growth Factor
  • ErbB Receptors