Low-molecular-weight protein tyrosine phosphatase (LMW-PTP) is able to specifically bind and dephosphorylate activated PDGF and insulin receptors, modulating the onset of mitogenic process. LMW-PTP is present in two distinct intracellular locations. While the cytosolic LMW-PTP pool interacts directly with activated insulin or PDGF receptors, the cytoskeleton-associated LMW-PTP is tyrosine phosphorylated upon PDGF stimulation and is involved in cytoskeleton rearrangement acting on p190Rho-GAP. We investigated the differential role of LMW-PTP in PDGF- or insulin-induced mitogenesis and cytoskeleton rearrangement. Dominant negative LMW-PTP influences both PDGF- and insulin-induced mitogenesis with a different extent and it induces a decrease in cellular adhesion and chemotaxis after PDGF but not insulin treatment. PDGF but not insulin stimulation leads to tyrosine phosphorylation of LMW-PTP. We propose that the differential effect of LMW-PTP on PDGF and insulin signaling is mainly due to the fact that during insulin signaling LMW-PTP does not become phosphorylated and thus does not act on its cytoskeleton-associated substrate/s.
Copyright 2000 Academic Press.