An experimental approach to evaluate the net binding free energy of buried hydrogen bonds and salt bridges is presented. The approach, which involves a modified multiple-mutant cycle protocol, was applied to selected interactions between TEM-1-beta-lactamase and its protein inhibitor, BLIP. The selected interactions (two salt bridges and two hydrogen bonds) all involving BLIP-D49, define a distinct binding unit. The penta mutant, where all side-chains constructing the binding unit were mutated to Ala, was used as a reference state to which combinations of side-chains were introduced. At first, pairs of interacting residues were added allowing the determination of interaction energies in the absence of neighbors, using double mutant cycles. Addition of neighboring residues allowed the evaluation of their cooperative effects on the interaction. The two isolated salt bridges were either neutral or repulsive whereas the two hydrogen bonds contribute 0.3 kcal mol(-1 )each. Conversely, a double mutant cycle analysis of these interactions in their native environment showed that they all stabilize the complex by 1-1.5 kcal mol(-1). Examination of the effects of neighboring residues on each of the interactions revealed that the formation of a salt bridge triad, which involves two connected salt bridges, had a strong cooperative effect on stabilizing the complex independent of the presence or absence of additional neighbors. These results demonstrate the importance of forming net-works of buried salt bridges. We present theoretical electrostatic calculations which predict the observed mode of cooperativity, and suggest that the cooperative networking effect results from the favorable contribution of the protein to the interaction. Furthermore, a good correlation between calculated and experimentally determined interaction energies for the two salt bridges, and to a lesser extent for the two hydrogen bonds, is shown. The data analysis was performed on values of DeltaDeltaG(double dagger)K(d) which reflect the strength of short range interactions, while DeltaDeltaG(o)K(D) values which include the effects of long range electrostatic forces that alter specifically DeltaDeltaG(double dagger)k(a) were treated separately.
Copyright 2000 Academic Press.