We showed previously that 3 distal inhibitors of cholesterol synthesis are highly teratogenic in rats. AY 9944 and BM 15766 inhibit 7-dehydrocholesterol reductase, which catalyzes the last step of cholesterol synthesis, and triparanol inhibits Delta(24)-dehydrocholesterol reductase, which catalyzes the last step in another pathway. These molecules cause holoprosencephalic brain anomalies. Under certain experimental conditions, other anomalies (of the limbs and male genitalia) are also observed. Assays performed by gas chromatography-mass spectrometry (GC-MS) show hypocholesterolemia and an accumulation of precursors. These data indicate that this animal model can be considered a model of Smith-Lemli-Opitz syndrome. Smith-Lemli-Opitz syndrome is a recessive autosomal genetic disease characterized by malformations (microcephaly, corpus callosum agenesis, holoprosencephaly, and mental retardation), male pseudohermaphroditism, finger anomalies, and failure to thrive. The syndrome has been attributed to a deficit in 7-dehydrocholesterol reductase. As assayed by GC-MS, the sterol status of these patients indicates severe hypocholesterolemia and an accumulation of precursors: 7-dehydrocholesterol, 8-dehydrocholesterol, and oxidized derivatives. The presence of 7-dehydrocholesterol in the serum of patients is pathognomonic of the disease. The developmental gene Shh (sonic hedgehog) plays a key role in brain, limb, and genital development; it was shown recently that the Shh protein has to be covalently linked to cholesterol to be active. This is the first time that a posttranslational function has been attributed to cholesterol. There is an obvious relation between Shh dysfunction and the malformations observed in our experiments and in patients with Smith-Lemli-Opitz syndrome. However, the exact relation remains to be clarified. It is clear, however, that the role of cholesterol in embryonic development must be taken into account.