The structural properties of myristoylated forms of recombinant recoverin of the wild type and of its mutants with damaged second and/or third Ca(2+)-binding sites were studied by fluorimetry and circular dichroism. The interaction of wild-type recoverin with calcium ions was shown to induce unusual structural rearrangements in its molecule. In particular, protein binding with Ca2+ ions results in an increase in the mobility of the environment of Trp residues, in higher hydrophobicity, and in elevated thermal stability (its thermal transition shifts by 15 degrees C to higher temperatures) but has almost no effect on its secondary structure. Similar structural changes induced by Ca2+ are also characteristic of the -EF2 mutant of recoverin whose second Ca(2+)-binding site is modified and cannot bind calcium ions. The structural properties of the -EF3 and -EF2,3 mutants (whose third or simultaneously second and third Ca(2+)-binding sites, respectively, are modified and damaged) are practically indifferent to calcium ions.