Increased expression of CD40 and CD40 ligand (CD40L or CD154) has been found in inflamed mucosa of human inflammatory bowel disease (IBD), and interactions between these molecules seem to be involved in local cytokine production by macrophages. However, the precise role of CD40 signaling in the pathogenesis of IBD is still poorly understood. The aim of the present study was to investigate the in vivo relevance of CD40 signaling in experimental colitis in SCID mice reconstituted with syngeneic CD45RBhighCD4+ T cells. The results demonstrated that CD40+ and CD40L+ cells as well as their mRNA levels were significantly increased in inflamed mucosa. Administration of anti-CD40L neutralizing mAb over an 8-wk period starting immediately after CD45RBhighCD4+ T cell reconstitution completely prevented symptoms of wasting disease. Intestinal mucosal inflammation was effectively prevented, as revealed by abrogated leukocyte infiltration and decreased CD54 expression and strongly diminished mRNA levels of the proinflammatory cytokines IFN-gamma, TNF, and IL-12. When colitic SCID mice were treated with anti-CD40L starting at 5 wk after T cell transfer up to 8 wk, this delayed treatment still led to significant clinical and histological improvement and down-regulated proinflammatory cytokine secretion. These data suggest that the CD40-CD40L interactions are essential for the Th1 inflammatory responses in the bowel in this experimental model of colitis. Blockade of CD40 signaling may be beneficial to human IBD.