Protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is irreversibly activated by a proteolytic mechanism, then internalized and degraded in lysosomes. The latter is critical for temporal fidelity of thrombin signaling. Toward understanding PAR1 down-regulation, we first investigated the pathway of PAR1 internalization. Activated PAR1 was rapidly recruited to clathrin-coated pits, where it colocalized with transferrin receptor (TfnR). Dominant-negative dynamin and clathrin hub mutants both blocked PAR1 internalization. Blockade of PAR1 internalization with dynamin K44A also inhibited activation-dependent PAR1 degradation. Thus activated PAR1 internalizes via clathrin-coated pits together with receptors that recycle and is then sorted away from such receptors and delivered to lysosomes. In the course of these studies we identified a mutant HeLa cell line, designated JT1, that was defective in PAR1 internalization. PAR1 signaled robustly in JT1 cells but was not phosphorylated or recruited to clathrin-coated pits after activation. Internalization of TfnR was intact in JT1 cells and internalization of beta(2)-adrenergic receptor, a GPCR that internalizes and recycles, was present but perhaps reduced. Taken together, these studies suggest that PAR1 is internalized in a dynamin- and clathrin-dependent manner like TfnR and beta(2)-adrenergic receptor but requires a distinct gene product for recruitment into this pathway.