The amino acid analog 3-[(123)I]iodo-alpha-methyl-L-tyrosine (IMT) is under clinical evaluation as a SPECT tracer of amino acid transport in brain tumors. This study investigated the carrier systems involved in IMT transport in human glioma cells in comparison with [3H-methyl]-L-methionine (3H-MET).
Methods: Human glioma cells, type 86HG-39, were cultured and incubated for 1 min at 37 degrees C with IMT and 3H-MET in the lag phase (1.2 d after seeding), exponential growth phase (3 d after seeding), and plateau phase (8 d after seeding). Experiments were performed in the presence and absence of Na+, during inhibition of system L amino acid transport by 2-aminobicyclo[2.2.1 ]heptane-2-carboxylic acid (BCH), and during inhibition of system A amino acid transport by 2-(methylamino)-isobutyric acid (MeAIB).
Results: IMT and 3H-MET uptake decreased by 55%-73% when the cells entered from the exponential growth phase into the plateau phase (P< 0.05; n = 3-11). Inhibition by BCH reduced uptake of IMT in the lag phase, exponential growth phase, and plateau phase by 90%-98% (P < 0.001; n = 3-6) and the uptake of 3H-MET by 73%-83% (P < 0.001; n = 3-11). In a Na+-free medium 3H-MET uptake was reduced by 23%-33% (P < 0.05; n = 3-11), whereas IMT uptake was not significantly different. MeAIB showed no significant effect on IMT or 3H-MET uptake in either phase.
Conclusion: Transport of both IMT and 3H-MET depends on the proliferation rate of human glioma cells in vitro and is dominated by BCH-sensitive transport. These data indicate that system L is induced in rapidly proliferating glioma cells and is the main contributor to the uptake of both tracers. 3H-MET transport showed a minor Na+ dependency that was not attributable to system A. The similarity of transport mechanisms of both tracers emphasizes the clinical equivalence of IMT SPECT and (11)C-MET PET for the diagnostic evaluation of gliomas.