In areas of intense Plasmodium falciparum transmission, clinical immunity is acquired during childhood, and adults enjoy substantial protection against malaria. An exception to this rule is pregnant women, in whom malaria is both more prevalent and severe than in nonpregnant women. Pregnancy-associated malaria (PAM) in endemic areas is concentrated in the first few pregnancies, indicating that protective immunity to PAM is a function of parity. The placenta is often heavily infected in PAM, and placental parasites show a striking preference for chondroitin sulfate A (CSA) as an adhesion receptor. Plasma Abs from malaria-exposed multiparous women are able to interfere with binding of P. falciparum parasites to CSA in vitro, and acquisition of Abs interfering with CSA-specific parasite sequestration thus appears to be a critical element in acquired protection against PAM. Here we show that adults from an area of hyperendemic P. falciparum transmission generally possessed low levels of Abs specifically recognizing surface Ags expressed by a CSA-adhering parasite isolate, while unselected isolates were well recognized. In marked contrast, most third-trimester pregnant women from that area had very high plasma levels of such Abs. Plasma levels of Abs specifically recognizing the CSA-adhering isolate strongly depended on parity, whereas recognition of CSA-nonadhering isolates did not. Finally, we demonstrate a clear correlation between plasma levels of Abs recognizing the CSA-specific isolate and the ability to interfere with its sequestration to CSA in vitro. Our study supports the hypothesis that Abs inhibiting CSA-specific parasite sequestration are important in acquisition of protection against PAM.