GNAS1 on chromosome 20 is a complex locus, encoding multiple proteins, of which G(s)alpha, the alpha-subunit of the heterotrimeric stimulatory G protein G(s), is of particular interest clinically. Amino acid substitutions at two specific codons lead to constitutive activation of G(s)alpha. Such gain-of-function mutations are found in a variety of sporadic endocrine tumors and in McCune-Albright syndrome, a sporadic condition characterized by multiple endocrine abnormalities. Heterozygous loss of G(s)alpha function results in the dominantly inherited condition, Albright hereditary osteodystrophy (AHO). Here we present a review of published GNAS1 mutations and report 19 additional mutations, of which 15 are novel. A diverse range of inactivating mutations has been detected, scattered throughout the gene but showing some evidence of clustering. Only one, a recurring 4 bp deletion in exon 7, could be considered common among AHO patients. The parental origin of the mutation apparently determines whether or not the patient shows end-organ resistance to hormones such as parathyroid hormone. G(s)alpha is biallelically expressed in all tissues studied to date and thus there is no direct evidence that this transcript is imprinted. However, the recent identification of other imprinted transcripts encoded by GNAS1 and overlapping G(s)alpha, together with at least one imprinted antisense transcript, raises intriguing questions about how the primary effect of mutations in GNAS1 might be modulated.
Copyright 2000 Wiley-Liss, Inc.