Rats were given bilateral lesions of the motor cortex on the day of birth (P1), tenth day of life (P10), or in adulthood. They were trained on several motor tasks (skilled forelimb reaching, beam traversing, tongue extension), general motor activity, and a test of spatial learning (Morris water task). Although all lesion groups were impaired at skilled reaching, the P10 group was less impaired than either of the other two lesion groups. Furthermore, on the other motor tests the P10 group did not differ from controls whereas both P1 and adult groups were impaired. Only the P1 lesion group was impaired at the acquisition of the Morris water task. Anatomical analyses revealed that the P1 and P10 rats had smaller brains than the other two groups as well as having a generalized decrease in cortical thickness. Dendritic analysis of layer III pyramidal cells in the parietal cortex revealed a decrease in apical arbor in the lesion groups and an increase in the basilar arbor of the P1 and adult lesion animals. The P1 and adult operated groups showed an increase in spine density in the basilar dendrites of layer V pyramidal cells. Finally, analysis of the pattern of corticospinal projections revealed that the P1 animals had a markedly wider field of corticospinal projection neurons than any of the other groups. The widespread anatomical changes in all lesion groups versus the relatively better behavioral recovery after P10 lesions suggests that day 10 represents an optimal period for adapting to brain damage and subsequent brain reorganization.