The activity of the [-831; +103] promoter of the human cyclooxygenase-2 gene in cultured rabbit chondrocytes is stimulated 2.9 +/- 0.3-fold by interleukin-1beta and this stimulation depends on [-132; -124] C/EBP binding-and [-223; -214] NF-kappaB binding-sites. The C/EBPbeta and C/EBPdelta factors bind to the [-132; -124] sequence. The [-61; -53] sequence is also recognized by C/EBPbeta and C/EBPdelta as well as USF. Mutation of the whole [-61; -53] sequence abolished the stimulation of transcription but single mutations of the C/EBP or USF site did not alter the activity of the promoter, suggesting that the factors bound to the proximal [-61; -53] sequence interact with different members of the general transcription machinery. The [-223; -214] site binds only the p50/p50 homodimer and a non-rel-related protein, but not the transcriptionally active heterodimer p50/p65. The p50/p50 homodimer could interact with the C/EBP family members bound to the [-132; -124] sequence for full stimulation of the COX-2 transcription by interleukin-1beta in chondrocytes. By contrast, the [-448; -449] sequence binds with a low affinity both the p50/p50 homodimeric and p50/p65 heterodimeric forms of NF-kappaB but has no role in the regulation of the human COX-2 promoter in chondrocytes.