Peroxisome proliferator activator receptor-gamma agonists and 15-deoxy-Delta(12,14)(12,14)-PGJ(2) induce apoptosis in normal and malignant B-lineage cells

J Immunol. 2000 Dec 15;165(12):6941-8. doi: 10.4049/jimmunol.165.12.6941.

Abstract

The research described herein evaluates the expression and functional significance of peroxisome proliferator activator receptor-gamma (PPAR-gamma) on B-lineage cells. Normal mouse B cells and a variety of B lymphoma cells reflective of stages of B cell differentiation (e.g., 70Z/3, CH31, WEHI-231, CH12, and J558) express PPAR-gamma mRNA and, by Western blot analysis, the 67-kDa PPAR-gamma protein. 15-Deoxy-Delta(12,14)-PGJ(2) (15d-PGJ(2)), a PPAR-gamma agonist, has a dose-dependent antiproliferative and cytotoxic effect on normal and malignant B cells as shown by [(3)H]thymidine and 3-[4,5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide assays. Only PPAR-gamma agonists (thiazolidinediones), and not PPAR-alpha agonists, mimicked the effect of 15d-PGJ(2) on B-lineage cells, indicating that the mechanism by which 15d-PGJ(2) negatively affects B-lineage cells involves in part PPAR-gamma. The mechanism by which PPAR-gamma agonists induce cytotoxicity is via apoptosis, as shown by annexin V staining and as confirmed by DNA fragmentation detected using the TUNEL assay. Interestingly, addition of PGF(2alpha), which was not known to affect lymphocytes, dramatically attenuated the deleterious effects of PPAR-gamma agonists on B lymphomas. Surprisingly, 15d-PGJ(2) induced a massive increase in nuclear mitogen-activated protein kinase activation, and pretreatment with PGF(2alpha) blunted the mitogen-activated protein kinase activation. This is the first study evaluating PPAR-gamma expression and its significance on B lymphocytes. PPAR-gamma agonists may serve as a counterbalance to the stimulating effects of other PGs, namely PGE(2), which promotes B cell differentiation. Finally, the use of PGs, such as 15d-PGJ(2), and synthetic PPAR-gamma agonists to induce apoptosis in B-lineage cells may lead to the development of novel therapies for fatal B lymphomas.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Apoptosis / drug effects
  • Apoptosis / immunology*
  • B-Lymphocytes / cytology
  • B-Lymphocytes / drug effects
  • B-Lymphocytes / metabolism*
  • Cell Lineage / immunology
  • Cells, Cultured
  • Chromans / pharmacology
  • Dinoprost / pharmacology
  • Hypoglycemic Agents / pharmacology
  • Lymphoma, B-Cell / metabolism*
  • Lymphoma, B-Cell / pathology
  • Male
  • Mice
  • Mice, Inbred C3H
  • Mice, Inbred C57BL
  • Mice, Inbred DBA
  • Prostaglandin D2 / analogs & derivatives
  • Prostaglandin D2 / physiology*
  • Prostaglandin D2 / toxicity
  • RNA, Messenger / biosynthesis
  • Receptors, Cytoplasmic and Nuclear / agonists*
  • Receptors, Cytoplasmic and Nuclear / biosynthesis
  • Receptors, Cytoplasmic and Nuclear / genetics
  • Receptors, Cytoplasmic and Nuclear / physiology
  • Thiazoles / pharmacology
  • Thiazolidinediones*
  • Transcription Factors / agonists*
  • Transcription Factors / biosynthesis
  • Transcription Factors / genetics
  • Transcription Factors / physiology
  • Troglitazone
  • Tumor Cells, Cultured

Substances

  • 15-deoxy-delta(12,14)-prostaglandin J2
  • Chromans
  • Hypoglycemic Agents
  • RNA, Messenger
  • Receptors, Cytoplasmic and Nuclear
  • Thiazoles
  • Thiazolidinediones
  • Transcription Factors
  • Dinoprost
  • Troglitazone
  • Prostaglandin D2
  • ciglitazone