C-substituted macrocycles as candidates for radioimmunotherapy

Inorg Chem. 2000 Sep 4;39(18):4123-9. doi: 10.1021/ic000315f.

Abstract

The reaction between aryl aldehydes, the macrocyclic ligand 6-methyl-1,4,8,11-tetraazacyclotetradecane-6-amine (L1), and NaBH3CN produces the corresponding benzyl-substituted ligands in good yield. Copper(II) complexes of the ligands derived from salicylaldehyde (L2), p-hydroxybenzaldehyde (L4), and p-carboxybenzaldehyde (L5) were structurally characterized: [CuL2](ClO4)2.3H2O (monoclinic, P2(1)/c, a = 11.915(6) A, b = 13.861(2) A, c = 17.065(8) A, beta = 102.14(2) degrees, Z = 4); [CuL4](ClO4)2 (monoclinic, P2(1)/n, a = 9.550(3) A, b = 17.977(2) A, c = 14.612(4) A, beta 96.76(1) degrees, Z = 4), and [CuL4](ClO4)2 (monoclinic, P2(1)/n, a = 9.286(2) A, b = 11.294(1) A, c = 23.609(8) A, beta 93.68(1) degrees, Z = 4). Conjugation of several CuII complexes to a protein (bovine serum albumin) has been pursued with a view to the application of these macrocycles as bifunctional chelating agents in radioimmunotherapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Crystallography, X-Ray
  • Heterocyclic Compounds / chemistry*
  • Models, Molecular
  • Proteins / chemistry
  • Radioimmunotherapy*

Substances

  • Heterocyclic Compounds
  • Proteins