Protein toxins of the Shiga family have become potent tools in studying a number of intracellular transport events such as endocytosis, the communication between endosomes and the biosynthetic/secretory pathway, and retrograde transport from the Golgi apparatus to the endoplasmic reticulum. It seems clear today that most of these transport events can be explained from the toxins' interactions with cellular factors. This review will primarily focus on the discussion of recent data obtained on Shiga toxin and related toxins. We will point out to what extent the study of these proteins has opened new avenues for the development of intracellular targeting tools.