Glucagon-like peptide-2 (GLP-2) regulates energy homeostasis via effects on nutrient absorption and maintenance of gut mucosal epithelial integrity. The biological actions of GLP-2 in the central nervous system (CNS) remain poorly understood. We studied the sites of endogenous GLP-2 receptor (GLP-2R) expression, the localization of transgenic LacZ expression under the control of the mouse GLP-2R promoter, and the actions of GLP-2 in the murine CNS. GLP-2R expression was detected in multiple extrahypothalamic regions of the mouse and rat CNS, including cell groups in the cerebellum, medulla, amygdala, hippocampus, dentate gyrus, pons, cerebral cortex, and pituitary. A 1.5-kilobase fragment of the mouse GLP-2R promoter directed LacZ expression to the gastrointestinal tract and CNS regions in the mouse that exhibited endogenous GLP-2R expression, including the cerebellum, amygdala, hippocampus, and dentate gyrus. Intracerebroventricular injection of GLP-2 significantly inhibited food intake during dark-phase feeding in wild-type mice. Disruption of glucagon-like peptide-1 receptor (GLP-1R) signaling with the antagonist exendin-(9-39) in wild-type mice or genetically in GLP-1R(-)/- mice significantly potentiated the anorectic actions of GLP-2. These findings illustrate that CNS GLP-2R expression is not restricted to hypothalamic nuclei and demonstrate that the anorectic effects of GLP-2 are transient and modulated by the presence or absence of GLP-1R signaling in vivo.