Capillary isoelectric focusing (CIEF) was used to profile the cellulase composition in complex fermentation samples of secreted proteins from Trichoderma reesei. The enzyme cellobiohydrolase I (CBH I, also referred to as Cel7A), a major component in these extracts, was purified from different strains and characterized using analytical methods such as CIEF, high-performance anion-exchange chromatography with pulsed amperometric detection (HPAEC-PAD), and capillary liquid chromatography-electrospray mass spectrometry (cLC-ESMS). ESMS was also used to monitor the extent of glycosylation in CBH I isolated from T. reesei strain RUT-C30 and two derivative mutant strains. Selective identification of tryptic N-linked glycopeptides was achieved using LC-ESMS on a quadrupole/time-of-flight instrument with a mixed scan function. The suspected glycopeptides were further analyzed by on-line tandem mass spectrometry to determine the nature of N-linked glycans and their attachment sites. This strategy enabled the identification of a high mannose glycan attached to Asn270 (predominantly Man8GlcNAc2) and single GlcNAc occupancy at Asn45 and Asn384 with some site heterogeneity depending on strains and fermentation conditions. The linker region of CBH I was shown to be extensively glycosylated with di-, and tri-saccharides at Thr and Ser residues as indicated by MALDI-TOF and HPAEC-PAD experiments. Additional heterogeneity was noted in the CBH I linker peptide of RUT-C30 strain with the presence of a phosphorylated di-saccharide.