Sustained expression of human apo A-I following adenoviral gene transfer in mice

Gene Ther. 2001 Jan;8(2):121-7. doi: 10.1038/sj.gt.3301374.

Abstract

Elevation of HDL cholesterol, following adenoviral apolipoprotein A-I (apo A-I) gene transfer, may delay or revert ischemic cardiovascular disease, provided transgene expression is persistent. The choice of promoter may have significant impact on persistence of transgene expression. Human apo A-I expression was compared after adenoviral gene transfer with a cytomegalovirus promoter (CMV) driven construct (AdCMV/A-I.gA-I) and with a construct (AdA-I.gA-I.4xapoE) containing the endogenous 256 bp apo A-I promoter (A-I), the genomic human apo A-I DNA (gA-I) and 4 human apo E enhancers (4xapoE) in three different mouse strains: C57BL/6, Balb/c and Fvb. After gene transfer with 5 x 10(8) p.f.u. of AdCMV/A-I.gA-I, human apo A-I expression was observed for 35 days in C57BL/6 mice, but declined below 1 mg/dl within 14 days both in Balb/c and Fvb mice, due to a strong humoral immune response against human apo A-I. In contrast, after transfer with AdA-I.gA-I.4xapoE, human apo A-I expression persisted for 6 months in all three strains and no antibodies against human apo A-I occurred in Fvb or Balb/c mice. Human apo A-I transgene DNA level 35 days after transfer with AdA-I.gA-I.4xapoE was 4.6- to 5.5-fold higher than with AdCMV/A-I.gA-I. CMV promoter attenuation occurred in all three strains, but promoter attenuation was not observed in any strain after transfer with AdA-I.gA-I.4xapoE. In conclusion, gene transfer with AdA-I.gA-I.4xapoE is associated with absence of an immune response against human apo A-I, improved transgene DNA persistence and absence of promoter shut-off, resulting in human apo A-I expression for up to 6 months in three different mouse strains. Possibly, the absence of human apo A-I expression in antigen-presenting cells with the liver-specific apo A-I promoter containing construct abrogated the immune response against human apo A-I in Balb/c and Fvb mice.

MeSH terms

  • Adenoviridae / genetics*
  • Alanine Transaminase / blood
  • Animals
  • Antibody Formation
  • Apolipoprotein A-I / genetics
  • Apolipoprotein A-I / immunology
  • Apolipoprotein A-I / metabolism*
  • Cell Division / immunology
  • Cytomegalovirus / genetics
  • DNA / metabolism
  • Female
  • Gene Expression Regulation
  • Gene Transfer Techniques*
  • Humans
  • Mice
  • Mice, Inbred BALB C
  • Mice, Inbred C57BL
  • Mice, Inbred Strains
  • Promoter Regions, Genetic
  • Species Specificity
  • Spleen / immunology
  • Transgenes

Substances

  • Apolipoprotein A-I
  • DNA
  • Alanine Transaminase