Local anesthetic inhibition of voltage-activated potassium currents in rat dorsal root ganglion neurons

Anesthesiology. 2001 Jun;94(6):1089-95. doi: 10.1097/00000542-200106000-00025.

Abstract

Background: Local anesthetic actions on the K+ channels of dorsal root ganglion (DRG) and dorsal horn neurons may modulate sensory blockade during neuraxial anesthesia. In dorsal horn neurons, local anesthetics are known to inhibit transient but not sustained K+ currents. The authors characterized the effects of local anesthetics on K+ currents of isolated DRG neurons.

Methods: The effects of lidocaine, bupivacaine, and tetracaine on K+ currents in isolated rat DRG neurons were measured with use of a whole cell patch clamp method. The currents measured were fast-inactivating transient current (I(Af)), slow-inactivating transient current (I(As)), and noninactivating sustained current (I(Kn)).

Results: One group of cells (type 1) expressed I(Af) and I(Kn). The other group (type 2) expressed I(As) and I(Kn). The diameter of type 2 cells was smaller than that of type 1 cells. Lidocaine and bupivacaine inhibited all three K+ currents. Tetracaine inhibited I(As) and I(Kn) but not I(Af) For bupivacaine, the concentration for half-maximal inhibition (IC50) of I(Kn) in type 2 cells was lower than that for I(Kn) in type 1 cells (57 vs. 121 microM). Similar results were obtained for tetracaine (0.6 vs. 1.9 mM) and for lidocaine (2.2 vs. 5.1 mM).

Conclusions: Local anesthetics inhibited both transient and sustained K+ currents in DRG neurons. Because K+ current inhibition is known to potentiate local anesthetic-induced impulse inhibition, the lower IC50 for I(Kn) of small type 2 cells may reflect preferential inhibition of impulses in nociceptive neurons. The overall modulatory actions of local anesthetics probably are determined by their differential effects on presynaptic (DRG) and postsynaptic (dorsal horn neurons) K+ currents.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anesthetics, Local / pharmacology*
  • Animals
  • Bupivacaine / pharmacology
  • Female
  • Ganglia, Spinal / cytology
  • Ganglia, Spinal / drug effects
  • Ganglia, Spinal / metabolism*
  • In Vitro Techniques
  • Lidocaine / pharmacology
  • Male
  • Neurons / drug effects
  • Neurons / metabolism*
  • Patch-Clamp Techniques
  • Potassium Channel Blockers*
  • Rats
  • Rats, Sprague-Dawley
  • Tetracaine / pharmacology

Substances

  • Anesthetics, Local
  • Potassium Channel Blockers
  • Tetracaine
  • Lidocaine
  • Bupivacaine