Introduction: Linking-related anterograde functional bundle branch block during supraventricular tachycardia (SVT) is due to repetitive concealed retrograde conduction of impulses from the contralateral bundle branch and can be eliminated by a critically timed premature ventricular beat (PVB). We assessed the electrophysiologic characteristics of PVB-induced dissipation of functional bundle branch block during SVT.
Methods and results: During SVT with functional bundle branch block, PVB was delivered from the right ventricular apex, scanning the tachycardia cycle length (CL) with 10-msec decrements in the coupling interval in 14 patients (3 AV nodal reentrant tachycardia and 11 orthodromic AV reciprocating tachycardia). Dissipation was achieved in group 1: functional right bundle branch block (RBBB) in 4, functional left bundle branch block (LBBB) in 4, and both functional RBBB and LBBB in 1 with a dissipation zone occupying 4% to 13% (mean 8.5%) of the tachycardia CL. The outer limits were 22+/-16 msec and 68+/-14 msec < tachycardia CL; the inner limits were 56+/-18 msec and 90+/-24 msec < tachycardia CL for RBBB and LBBB, respectively (both P < 0.05). Dissipation could not be achieved in group 2 (4 RBBB and 1 LBBB) due to CL-dependent bundle branch block and/or local ventricular refractoriness.
Conclusion: During SVT, functional bundle branch block due to "linking" often can be dissipated by timely PVB delivered from the right ventricular apex within a narrow zone of the tachycardia CL. Our findings suggest that the dissipation zone is affected by the pattern of functional bundle branch block relative to the site of PVB delivery.