Phototropism experiments were done with sporangiophores of the fungus Phycomyces blakesleeanus to characterize the interaction between far-UV, blue and red light. Far-UV light elicits negative phototropism (bending away from the light source) while blue light elicits positive phototropism (bending toward the light source). In contrast, red light above 600 nm is phototropically inert. Phototropism was analyzed with light regimens of bilateral or unilateral irradiation with far-UV and blue light. Under bilateral irradiation, in which the two light sources were facing each other, blue light partially inhibited the far-UV-elicited phototropism. A fluence-response curve for this inhibition showed that blue light was maximally effective at fluence rates which exceeded 3 to 57 times that of the far-UV. Tonic red light, which was given from above, abolished to a large extent the antagonistic action of blue light. With a regimen of unilateral irradiation, i.e. when far-UV and blue light were given from the same side, a phototropic balance could be achieved with approximately equal fluence rates of blue and UV light. Above or below this critical balance point the bending was either negative or positive. In this setup the effect of tonic red light was complex. First, it caused an enhancement of the positive or negative bending, and second, it caused at some fluence rates a sign reversal from positive to negative phototropism. The balance point itself was only marginally affected. The data cannot be explained on the basis of a single photoreceptor and support the previous notion of separate far-UV and blue-light receptors. The antagonism between these two receptors probably occurs on the level of a red-light-absorbing receptor intermediate.