The analysis of complex human diseases has been spurred by the number of published genomic sequence variants - many identified in the course of sequencing the human genome. But, to be useful for genetic analysis, variants have to be mapped accurately, their frequencies in various populations determined, and automated high-throughput assay techniques developed. Recently proposed methods address these issues: the use of 'reduced representation shotgun' methods for more efficient detection of single nucleotide polymorphisms (SNPs), the employment of high-throughput genotyping techniques, the development of SNP maps that incorporate information about linkage disequilibrium, and the use of SNPs in identifying susceptibility genes for common illnesses.