Background: The Ehlers-Danlos syndrome is a heritable connective-tissue disorder caused by defects in fibrillar-collagen metabolism. Mutations in the type V collagen genes account for up to 50 percent of cases of classic Ehlers-Danlos syndrome, but many other cases are unexplained. We investigated whether the deficiency of the tenascins, extracellular-matrix proteins that are highly expressed in connective tissues, was associated with the Ehlers-Danlos syndrome.
Methods: We screened serum samples from 151 patients with the classic, hypermobility, or vascular types of the Ehlers-Danlos syndrome; 75 patients with psoriasis; 93 patients with rheumatoid arthritis; and 21 healthy persons for the presence of tenascin-X and tenascin-C by enzyme-linked immunosorbent assay. We examined the expression of tenascins and type V collagen in skin by immunohistochemical methods and sequenced the tenascin-X gene.
Results: Tenascin-X was present in serum from all normal subjects, all patients with psoriasis, all patients with rheumatoid arthritis, and 146 of 151 patients with the Ehlers-Danlos syndrome. Tenascin-X was absent from the serum of the 5 remaining patients with Ehlers-Danlos syndrome, who were unrelated. Tenascin-X deficiency was confirmed in these patients by analysis of skin fibroblasts and by immunostaining of skin. The expression of tenascin-C and type V collagen was normal in these patients. All five of these patients had hypermobile joints, hyperelastic skin, and easy bruising, without atrophic scarring. Tenascin-X mutations were identified in all tenascin-X-deficient patients; one patient had a homozygous tenascin-X gene deletion, one was heterozygous for the deletion, and three others had homozygous truncating point mutations, confirming a causative role for tenascin-X and a recessive pattern of inheritance.
Conclusions: Tenascin-X deficiency causes a clinically distinct, recessive form of the Ehlers-Danlos syndrome. This finding indicates that factors other than the collagens or collagen-processing enzymes can cause the syndrome and suggests a central role for tenascin-X in maintaining the integrity of collagenous matrix.