Phosphatidylinositol 3-kinase (PI3K) is a key regulator of a variety of cellular functions from cytoskeletal organization, vesicular trafficking, and cell proliferation to apoptosis. The enzyme complex is comprised of an 85-kDa adaptor (p85) coupled to a 110-kDa catalytic subunit (p110). While the function of PI3K has been largely attributed to the generation of D-3 lipids, an unanswered question has been whether p85 with a number of motifs (SH2, SH3, BcR homology (BH) region) can generate independent intracellular signals. In this study, we demonstrate that p85 lacking p110 (Deltap85) can activate NFAT transcription in T-cell hybridomas and normal splenocytes. This up-regulatory effect was unaffected by inhibition of PI 3-kinase, and cooperated specifically with Rac1, but not related family members. Stimulation correlated with Rac1 binding and was lost with the deletion of the BH domain. Lastly, the CD28-Deltap85 chimera also cooperated with TcR/CD3 to provide co-signals that enhanced IL-2 transcription. Our findings identify for the first time p85 as an adaptor that operates independently of the classic PI 3-kinase catalytic pathway and further shows that this pathway can provide co-signals in the regulation of T-cell function.