The discovery of focal or multifocal cortical lesions using magnetic resonance imaging (MRI) and positron emission tomography (PET) scanning in the majority of infants with West syndrome has led to a surgical approach in the treatment of some patients with intractable infantile spasms. The locations of these lesions should be concordant with localization of focal ictal and/or interictal electroencephalographic (EEG) abnormalities prior to proceeding with cortical resection. When a single lesion is present on the MRI or PET, and there is good correlation with EEG localization, surgical treatment is generally quite favorable in terms of both seizure control and cognitive development. Interictal glucose metabolism PET scans in children with intractable cryptogenic infantile spasms show unifocal cortical hypometabolism in about 20% of cases. In the majority, however, multifocal asymmetric hypometabolism is suggestive of multifocal underlying lesions, possibly multifocal cortical dysplasia. When the pattern of glucose hypometabolism is symmetric, a lesional etiology is less likely, thus neurometabolic or neurogenetic disorders should be considered. Therefore, the pattern of glucose hypometabolism on PET in infants with intractable cryptogenic spasms is a useful guide to decide whether a medical or surgical approach should be undertaken. In order to achieve the best cognitive outcome with surgery, it is important to resect the entire 'nociferous' area rather than just the seizure focus. Our research with new PET imaging probes has attempted to provide a comprehensive evaluation of the epileptogenic zone including the 'nociferous' cortex. We have used [(11)C]flumazenil (FMZ), which labels gamma aminobutyric acid(A) (GABA(A)) receptors, and have found this to be particularly useful in showing: (i) decreased receptor binding with medial temporal involvement thus indicating resection of medial temporal structures, (ii) the peri-lesional epileptogenic zone surrounding MRI lesions, (iii) the seizure onset zone in MRI-negative cases, and (iv) potential secondary epileptic foci. Another recently developed PET probe, alpha[(11)C]methyl-L-tryptophan (AMT) which is a precursor for the serotonin and the kynurenine metabolism pathways, is capable of differentiating between epileptogenic and non-epileptogenic tubers in patients with tuberous sclerosis complex and intractable epilepsy (including infantile spasms). Subsequently, we have applied AMT PET in patients with multifocal cortical dysplasia to determine the predominant seizure focus, and the results have been promising with regard to seizure control but not cognitive development. Thus, the introduction of newer more specific PET probes for epilepsy has led to improved and more accurate localization of seizure foci that should ultimately improve outcome of epilepsy surgery in West syndrome.