Gaussianity of the cosmological perturbations is one of the key predictions of standard inflation, but it is violated by other models of structure formation such as cosmic defects. We present the first test of the Gaussianity of the cosmic microwave background (CMB) on subdegree angular scales, where deviations from Gaussianity are most likely to occur. We apply the methods of moments, cumulants, the Kolmogorov test, the chi(2) test, and Minkowski functionals in eigen, real, Wiener-filtered, and signal-whitened spaces, to the MAXIMA-1 CMB anisotropy data. We find that the data, which probe angular scales between 10 arcmin and 5 deg, are consistent with Gaussianity. These results show consistency with the standard inflation and place constraints on the existence of cosmic defects.