Recent studies have provided evidence that macrophages from Th1-prone mouse strains respond with an M1 profile, and macrophages from Th2-prone mouse strains respond with an M2 profile, characterized by the dominant production of NO or TGF-beta 1, respectively. We have shown that peritoneal macrophages from IL-12p40 gene knockout mice have a bias toward the M2 profile, spontaneously secreting large amounts of TGF-beta 1 and responding to rIFN-gamma with weak NO production. Moreover, IL-12p40KO macrophages are more permissive to Trypanosoma cruzi replication than their wild-type littermate cells. Prolonged incubation with rIL-12 fails to reverse the M2 polarization of IL-12p40KO macrophages. However, TGF-beta 1 is directly implicated in sustaining the M2 profile because its inhibition increases NO release from IL-12p40KO macrophages. IFN-gamma deficiency is apparently not the reason for TGF-beta 1 up-regulation, because rIFN-gamma KO macrophages produce normal amounts of this cytokine. These findings raise the possibility that IL-12 has a central role in driving macrophage polarization, regulating their intrinsic ability to respond against intracellular parasites.