To investigate the relative importance of instream nutrient spiralling and wetland transformation processes on surface water quality, total nitrogen (TN) and total phosphorus (TP) concentrations in a 200-m reach of the River Lambourn in the south-east of England were monitored over a 2-year period. In addition, the soil pore water nutrient dynamics in a riparian ecosystem adjacent to the river were investigated. Analysis of variance indicated that TN, TP and suspended sediment concentrations recorded upstream of the wetland were statistically significantly higher (P < 0.05) than those downstream of the site. Such results suggest that the wetland was performing a nutrient retention function. Indeed, analysis of soil pore waters within the site show that up to 85% of TN and 70% of TP was removed from water flowing through the wetland during baseflow conditions, thus supporting the theory that the wetland played an important role in the regulation of surface water quality at the site. However, the small variations observed (0.034 mg TN l(-1) and 0.031 mg P l(-1)) are consistent with the theory of nutrient spiralling suggesting that both instream and wetland retention processes have a causal effect on surface water quality.