Soluble MHC class I molecules loaded with antigenic peptides are available either to detect and to enumerate or, alternatively, to sort and expand MHC class I-restricted and peptide-reactive T cells. A defined number of MHC class I/peptide complexes can now be implemented to measure T cell responses induced upon Ag-specific stimulation, including CD3/CD8/zeta-chain down-regulation, pattern, and quantity of cytokine secretion. As a paradigm, we analyzed the reactivity of a Melan-A/MART-1-specific and HLA-A2-restricted CD8(+) T cell clone to either soluble or solid-phase presented peptides, including the naturally processed and presented Melan-A/MART-1 peptide AAGIGILTV or the peptide analog ELAGIGILTV presented either by the HLA-A2 wild-type (wt) or mutant (alanineright arrowvaline aa 245) MHC class I molecule, which reduces engagement of the CD8 molecule with the HLA-A2 heavy chain. Soluble MHC class I complexes were used as either monomeric or tetrameric complexes. Soluble monomeric MHC class I complexes, loaded with the Melan-A/MART-1 peptide, resulted in CD3/CD8 and TCR zeta-chain down-regulation, but did not induce measurable cytokine release. In general, differences pertaining to CD3/CD8/zeta-chain regulation and cytokine release, including IL-2, IFN-gamma, and GM-CSF, were associated with 1) the format of Ag presentation (monomeric vs tetrameric MHC class I complexes), 2) wt vs mutant HLA-A2 molecules, and 3) the target Ag (wt vs analog peptide). These differences are to be considered if T cells are exposed to recombinant MHC class I Ags loaded with peptides implemented for detection, activation, or sorting of Ag-specific T cells.