In humans, maternal fibrinogen (Fg) is required to support pregnancies by maintaining hemostatic balance and stabilizing uteroplacental attachment at the fibrinoid layer found at the fetal-maternal junction. To examine relationships between low Fg levels and early fetal loss, a genetic model of afibrinogenemia was developed. Pregnant mice homozygous for a deletion of the Fg-gamma chain, which results in a total Fg deficiency state (FG(-/-)), aborted the fetuses at the equivalent gestational stage seen in humans. Results obtained from timed matings of FG(-/-) mice showed that vaginal bleeding was initiated as early as embryonic day (E)6 to 7, a critical stage for maternal-fetal vascular development. The condition of afibrinogenemia retarded embryo-placental development, and consistently led to abortion and maternal death at E9.75. Lack of Fg did not alter the extent or distribution pattern of other putative factors of embryo-placental attachment, including laminin, fibronectin, and Factor XIII, indicating that the presence of fibrin(ogen) is required to confer sufficient stability at the placental-decidual interface. The results of these studies demonstrate that maternal Fg plays a critical role in maintenance of pregnancy in mice, both by supporting proper development of fetal-maternal vascular communication and stabilization of embryo implantation.