Recurring chromosomal abnormalities in leukemia in PML-RARA transgenic mice parallel human acute promyelocytic leukemia

Blood. 2002 Apr 15;99(8):2985-91. doi: 10.1182/blood.v99.8.2985.

Abstract

Acute promyelocytic leukemia (APL) is characterized by the t(15;17)(q22;q11.2), which results in the PML-RARA fusion gene. In previous studies, we demonstrated that expression of a human PML-RARA complementary DNA in murine granulocyte precursor cells initiated the development of leukemia. However, leukemogenesis by PML-RARA required additional genetic alterations. To identify genetic changes that cooperate with PML-RARA in leukemogenesis, we performed spectral karyotyping analysis of myeloid leukemias from hMRP8-PML-RARA mice (11 cases) and from mice coexpressing PML-RARA and BCL2 (8 cases). Clonal abnormalities were detected in 18 of 19 cases (95%). Recurring numerical abnormalities identified in these murine leukemias included +15 (15 cases, 79%); loss of a sex chromosome (12 cases, 63%); +8 (10 cases, 53%); +10 (9 cases, 47%); +4, +7, or +14 (8 cases each, 42%); +16 (7 cases, 37%); and +6 (5 cases, 26%). In a series of 965 patients with APL, we identified secondary abnormalities in 368 (38%). The most common recurring abnormalities were +8 or partial trisomy of 8q (120 patients, 12.4%) and ider(17) t(15;17) (42 patients, 4.4%). The critical consequence of +8 in human leukemias appears to be the gain of 8q24, which is syntenic to mouse 15. Thus, our results suggest that PML-RARA-initiated murine leukemia is associated with a defined spectrum of genetic changes, and that these secondary mutations recapitulate, in part, the cytogenetic abnormalities found in human APL.

Publication types

  • Comparative Study
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Animals
  • Cell Transformation, Neoplastic / genetics
  • Chromosome Aberrations*
  • Chromosomes, Human, Pair 15
  • Chromosomes, Human, Pair 17
  • Chromosomes, Human, Pair 8
  • Humans
  • Karyotyping
  • Leukemia, Myeloid / etiology
  • Leukemia, Myeloid / genetics
  • Leukemia, Myeloid / pathology
  • Leukemia, Promyelocytic, Acute / genetics*
  • Mice
  • Mice, Transgenic / genetics*
  • Neoplasm Proteins / genetics*
  • Neoplasm Proteins / metabolism
  • Oncogene Proteins, Fusion / genetics*
  • Oncogene Proteins, Fusion / metabolism
  • Proto-Oncogene Proteins c-bcl-2 / genetics
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Recurrence

Substances

  • Neoplasm Proteins
  • Oncogene Proteins, Fusion
  • Proto-Oncogene Proteins c-bcl-2
  • promyelocytic leukemia-retinoic acid receptor alpha fusion oncoprotein