Our previous article reported that retroviral transduction of human type I consensus interferon-coding sequence into two human melanoma cells increased their susceptibility to cisplatin-induced apoptosis. Importantly, primary melanoma cells were significantly more sensitive to cisplatin-induced apoptosis with respect to metastatic melanoma cells. The aim of this study was to elucidate the subcellular mechanisms involved in this interferon-induced apoptotic proneness. Our results indicate that 1) cisplatin-induced apoptosis can be referred to as the type II apoptosis, ie, to the mitochondrially driven cascade; 2) treatment of interferon-producing melanoma cells with other type II apoptotic stimuli, such as radiation or staurosporine, also resulted in massive apoptosis, whereas type I stimuli, ie, anti-Fas, were ineffective; 3) interferon sensitization involved the caspase cascade in primary melanoma cells and the alternative pathway represented by cathepsin-mediated apoptosis in metastatic melanoma cells; 4) interferon production sensitizes cells to apoptosis by inducing, as the earliest event, mitochondrial membrane hyperpolarization. These results suggest that constitutive production of type I interferon by melanoma cells can act as an intracellular booster capable of increasing cell proneness to apoptosis by specifically modifying mitochondrial homeostasis and independently from the apoptotic cascade involved.