The cis-acting mRNA elements that promote programmed -1 ribosomal frameshifting present a natural target for the rational design of antiretroviral chemotherapies. It has been commonly accepted that the HIV-1 frameshifting signal is special, because its downstream enhancer element consists of a simple mRNA stem loop rather than a more complex secondary structure such as a pseudoknot. Here we present three lines of evidence, bioinformatic, structural, and genetic, showing that the biologically relevant HIV-1 frameshift signal contains a complex RNA structure that likely includes an extended RNA triple-helix region. We suggest that the potential intramolecular triplex structure is essential for viral propagation and viability, and that small molecules targeted to this RNA structure may possess antiretroviral activities.