The Cyclin D-Cdk4,6/INK4/Rb/E2F pathway plays a key role in controlling cell growth by integrating multiple mitogenic and antimitogenic stimuli. The components of this pathway are gene families with a high level of structural and functional redundancy and are expressed in an overlapping fashion in most tissues and cell types. Using classical transgenic technology as well as gene-targeting in ES cells, a series of mouse models have been developed to study the in vivo function of individual components of this pathway in both normal homeostasis and tumor development. These models have proven to be useful to define specific as well as redundant roles among members of these cell cycle regulatory gene families. This pathway is deregulated in the vast majority of human tumors by genetic and epigenetic alterations that target at least some of its key members such as Cyclin D1, Cdk4, INK4a and INK4b, pRb etc. As a consequence, some of these molecules are currently being considered as targets for cancer therapy, and several novel molecules, such as Cdk inhibitors, are under development as potential anti-cancer drugs.