Quantification of the expression levels of nuclear genes encoding plastid proteins under different genetic or environmental conditions can contribute to the genetic dissection of plastid functions. To facilitate such measurements, a set of 1,827 Arabidopsis thaliana genes coding for plastid proteins was PCR-amplified from genomic DNA and spotted on nylon membranes to generate an array of chloroplast-specific gene-sequence-tags (GSTs). The sensitivity and reliability of the experimental system was evaluated and a procedure was developed for detecting differential gene expression. The GST array was found to serve as a reliable monitor of changes in gene expression induced by environmental and genetic alteration of chloroplast functions. Based on comparisons of dark- versus light-grown seedlings, and wild-type versus prpl11-1 plants, lists of differentially expressed genes are provided which include 193/7 and 25/42 up/down-regulated genes, respectively. The cut-off values for differential expression were 2.5-times (up) and 0.40 (down). Additional up-regulated genes with relatively low expression ratios (from 1.5- to 2.5-times) or down-regulated with relatively high ratios (0.4-0.67) can be accessed at the website: http://www.mpiz-koeln.mpg.de/~richly/GST-array.html. A sample of genes analysed by quantitative reverse transcription PCR confirmed the expression profiles monitored by the GST array. Differential hybridisation experiments with the prpl11-1 mutant revealed the existence of regulatory networks sensing the protein state of the chloroplast and transmitting the signal to the nucleus.