We report on the results of angle-resolved photoemission experiments on a quasi-one-dimensional (1D) MX-chain compound [Ni(chxn)2Br]Br2, which shows a gigantic nonlinear optical effect. A "band" having about 500 meV energy dispersion is found in the first half of the Brillouin zone, but disappears at kb/pi approximately 1/2. These spectral features are well reproduced by the d-p chain model with a small charge-transfer energy Delta compared with that of 1D Cu-O compounds. We propose that this smaller Delta is the origin of the absence of clear spin-charge separation in the photoemission spectra and the strong nonlinear optical effect.