To investigate the role of gammadelta T cells in human autoimmune disease we expressed and characterized a gammadelta TCR from an autoimmune tissue lesion. The TCR was first identified in a rare form of polymyositis characterized by a monoclonal infiltrate of gammadelta T cells which invaded and destroyed skeletal muscle fibers. The Vgamma1.3-Jgamma1-Cgamma1/Vdelta2-Jdelta3 TCR cDNA of the original muscle invasive gammadelta T cell clone was reconstructed from unrelated cDNA and transfected into the mouse hybridoma BW58alpha(-)beta(-). Appropriate anti-human gammadelta TCR Abs stimulated the TCR transfectants to produce IL-2, thus demonstrating that the human gammadelta TCR functionally interacted with murine signaling components. The transfected Vgamma1.3/Vdelta2 TCR recognized a cytosolic protein expressed in cultured human myoblasts and TE671 rhabdomyosarcoma cells. The Ag was recognized in the absence of presenting cells. Using a panel of control gammadelta TCR transfectants with defined exchanges in different positions of both TCR chains, we showed that the gammadelta TCR recognized its Ag in a TCR complementarity-determining region 3-dependent way. To our knowledge, this is the first example of a molecularly defined gammadelta TCR directly derived from an autoimmune tissue lesion. The strategy used in this study may be applicable to other autoimmune diseases.