Neuroprotection by hypoxic preconditioning requires sequential activation of vascular endothelial growth factor receptor and Akt

J Neurosci. 2002 Aug 1;22(15):6401-7. doi: 10.1523/JNEUROSCI.22-15-06401.2002.

Abstract

Hypoxic preconditioning provides protection against ischemic brain lesions in animal models of cerebral ischemia-hypoxia. To analyze the underlying molecular mechanisms, we developed an in vitro model of hypoxic neuroprotection in cerebellar granule neurons (CGN) by reducing the oxygen tension to 1-5% for 1-24 hr. Exposure to 5% O2 for 9 hr resulted in reduction of cell death after potassium deprivation, treatment with 100 microm glutamate, or 500 microm 3-nitroproprioninc acid (3-NP) by 46, 22, and 55%, respectively. Shorter (1 or 3 hr) or longer (>12 hr) intervals or pretreatment with lower oxygen tension failed to rescue CGN from death. In contrast, toxicity of four different chemotherapeutic drugs [1-(2-chloroethyl)-3-cyclohexyl-1-nitrosourea, cisplatine, topotecane, and vincristine] was unaffected by hypoxic preconditioning. The induction of protective effects was dependent on new protein synthesis. Protein levels of B-cell lymphoma protein-2 (BCL-2), BCL-x(L/S), heat shock protein 70/90, and BCL-2-associated death protein remained unaltered. CGN incubated at 5% O2 for 9 hr showed increased levels of the vascular endothelial growth factor (VEGF), the VEGF receptor-2 (VEGFR-2), phosphorylated Akt/protein kinase B (PKB), and extracellular signal-regulated kinase 1 (ERK1). Incubation with a neutralizing anti-VEGF antibody, a monoclonal antibody to VEGFR-2, wortmannin, or antisense-Akt/PKB, but not treatment with U0126, an ERK-inhibitor, reverted the resistance acquired by hypoxic preconditioning. Inhibition of VEGFR-2 blocked the activation of Akt/PKB. Finally, pretreatment with recombinant VEGF resulted in a hypoxia-resistant phenotype in the absence of hypoxic preconditioning. Our data are indicating a sequential requirement for VEGF/VEGFR-2 activation and Akt/PKB phosphorylation for neuronal survival mediated by hypoxic preconditioning and propose VEGF as a hypoxia-induced neurotrophic factor.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cell Death
  • Cell Hypoxia / physiology*
  • Cell Survival / drug effects
  • Cell Survival / physiology
  • Cells, Cultured
  • Endothelial Growth Factors / metabolism
  • Endothelial Growth Factors / pharmacology
  • Enzyme Activation / drug effects
  • Enzyme Inhibitors / pharmacology
  • Lymphokines / metabolism
  • Lymphokines / pharmacology
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases / antagonists & inhibitors
  • Mitogen-Activated Protein Kinases / metabolism
  • Neurons / cytology
  • Neurons / metabolism*
  • Nitro Compounds
  • Oligonucleotides, Antisense / pharmacology
  • Oxygen / metabolism
  • Phosphorylation / drug effects
  • Potassium / metabolism
  • Propionates / pharmacology
  • Protein Serine-Threonine Kinases*
  • Proto-Oncogene Proteins / antagonists & inhibitors
  • Proto-Oncogene Proteins / genetics
  • Proto-Oncogene Proteins / metabolism*
  • Proto-Oncogene Proteins c-akt
  • Proto-Oncogene Proteins c-bcl-2 / metabolism
  • Rats
  • Rats, Sprague-Dawley
  • Receptor Protein-Tyrosine Kinases / metabolism*
  • Receptors, Growth Factor / metabolism*
  • Receptors, Vascular Endothelial Growth Factor
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors

Substances

  • Endothelial Growth Factors
  • Enzyme Inhibitors
  • Lymphokines
  • Nitro Compounds
  • Oligonucleotides, Antisense
  • Propionates
  • Proto-Oncogene Proteins
  • Proto-Oncogene Proteins c-bcl-2
  • Receptors, Growth Factor
  • Vascular Endothelial Growth Factor A
  • Vascular Endothelial Growth Factors
  • Receptor Protein-Tyrosine Kinases
  • Receptors, Vascular Endothelial Growth Factor
  • Akt1 protein, rat
  • Protein Serine-Threonine Kinases
  • Proto-Oncogene Proteins c-akt
  • Mitogen-Activated Protein Kinase 3
  • Mitogen-Activated Protein Kinases
  • 3-nitropropionic acid
  • Potassium
  • Oxygen