A family of new coordination vanadium(IV) compounds supported by a terminal or bridged aryl imido ligand are reported. Reaction of V(NMe(2))(4) with anilines ArNH(2), where Ar = 2,6-i-Pr(2)-C(6)H(3), 2,6-Me(2)-C(6)H(3), Ph, 2,6-Cl(2)-C(6)H(3), and C(6)F(5), afforded the diamagnetic imido-bridged complexes [V(NAr)(NMe(2))(2)](2) (1a-e). Chlorination of 1a-e with trimethylchlorosilane afforded complexes 2a-e formulated as [V(=NAr)Cl(2)(NHMe(2))(x)()](n)(). One-pot reaction of V(NMe(2))(4) with ArNH(2) in the presence of an excess of trimethylchlorosilane gave the five-coordinate compound [V(=NAr)Cl(2)(NHMe(2))(2)] (3a-e). Reaction of 3a-e with pyridine, bipyridine (bipy), or N,N,N',N'-tetramethylethylenediamine (tmeda) gave respectively the six-coordinate tris- or bis(pyridine) adducts [V(=NAr)Cl(2)(Py)(3)] (4a-e) or [V(=NAr)Cl(2)(Py)(2)(NHMe(2))] (5a), bipyridine complexes [V(=NAr)Cl(2)(bipy)(NHMe(2))] (5a-e) and [V(=NAr)Cl(2)(bipy)(Py)] (9a), and tmeda adduct [V(=NAr)Cl(2)(tmeda)(NHMe(2))] (10a). Moreover, five-coordinate complexes free of NHMe(2) ligands, such as [V(=NAr)Cl(2)(Py)(2)] (5a), [V(=NAr)Cl(2)(bipy)] (8a), and [V(=NAr)Cl(2)(tmeda)] (11a), were directly prepared starting from precursors 2a-e. All compounds were totally characterized by spectroscopic methods (IR, (1)H NMR for diamagnetic complexes, and EPR for paramagnetic complexes), elemental analysis, magnetism, and single-crystal X-ray diffraction studies for 1b, 3a, 3d, 4b, 4d, 7c, 10a, and 11a.